Ilya Sutskever

Affiliation: Unknown

Papers

  • Estimating the Hessian by Back-propagating Curvature

    In this work we develop Curvature Propagation (CP), a general technique for efficiently computing unbiased approximations of the Hessian of any function that is computed using a computational graph. At the cost of roughly two gradient evaluations, CP can give a rank-1 approximation of the whole Hessian, and can be …

  • Improving neural networks by preventing co-adaptation of feature detectors

    When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This "overfitting" is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful …

  • Exploiting Similarities among Languages for Machine Translation

    Dictionaries and phrase tables are the basis of modern statistical machine translation systems. This paper develops a method that can automate the process of generating and extending dictionaries and phrase tables. Our method can translate missing word and phrase entries by learning language structures based on large monolingual data and …

  • Distributed Representations of Words and Phrases and their Compositionality

    The recently introduced continuous Skip-gram model is an efficient method for learning high-quality distributed vector representations that capture a large number of precise syntactic and semantic word relationships. In this paper we present several extensions that improve both the quality of the vectors and the training speed. By subsampling of …

  • Learning Factored Representations in a Deep Mixture of Experts

    Mixtures of Experts combine the outputs of several "expert" networks, each of which specializes in a different part of the input space. This is achieved by training a "gating" network that maps each input to a distribution over the experts. Such models show promise for building larger networks that are …

  • Intriguing properties of neural networks

    Deep neural networks are highly expressive models that have recently achieved state of the art performance on speech and visual recognition tasks. While their expressiveness is the reason they succeed, it also causes them to learn uninterpretable solutions that could have counter-intuitive properties. In this paper we report two such …

  • Recurrent Neural Network Regularization

    We present a simple regularization technique for Recurrent Neural Networks (RNNs) with Long Short-Term Memory (LSTM) units. Dropout, the most successful technique for regularizing neural networks, does not work well with RNNs and LSTMs. In this paper, we show how to correctly apply dropout to LSTMs, and show that it …

  • Sequence to Sequence Learning with Neural Networks

    Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes …

  • Learning to Execute

    Recurrent Neural Networks (RNNs) with Long Short-Term Memory units (LSTM) are widely used because they are expressive and are easy to train. Our interest lies in empirically evaluating the expressiveness and the learnability of LSTMs in the sequence-to-sequence regime by training them to evaluate short computer programs, a domain that …

  • Addressing the Rare Word Problem in Neural Machine Translation

    Neural Machine Translation (NMT) is a new approach to machine translation that has shown promising results that are comparable to traditional approaches. A significant weakness in conventional NMT systems is their inability to correctly translate very rare words: end-to-end NMTs tend to have relatively small vocabularies with a single unk …