Yann LeCun

Affiliation: Unknown

Papers

  • Fast Inference in Sparse Coding Algorithms with Applications to Object Recognition

    Adaptive sparse coding methods learn a possibly overcomplete set of basis functions, such that natural image patches can be reconstructed by linearly combining a small subset of these bases. The applicability of these methods to visual object recognition tasks has been limited because of the prohibitive cost of the optimization …

  • Efficient Learning of Sparse Invariant Representations

    We propose a simple and efficient algorithm for learning sparse invariant representations from unlabeled data with fast inference. When trained on short movies sequences, the learned features are selective to a range of orientations and spatial frequencies, but robust to a wide range of positions, similar to complex cells in …

  • Learning Representations by Maximizing Compression

    We give an algorithm that learns a representation of data through compression. The algorithm 1) predicts bits sequentially from those previously seen and 2) has a structure and a number of computations similar to an autoencoder. The likelihood under the model can be calculated exactly, and arithmetic coding can be …

  • Convolutional Neural Networks Applied to House Numbers Digit Classification

    We classify digits of real-world house numbers using convolutional neural networks (ConvNets). ConvNets are hierarchical feature learning neural networks whose structure is biologically inspired. Unlike many popular vision approaches that are hand-designed, ConvNets can automatically learn a unique set of features optimized for a given task. We augmented the traditional …

  • No More Pesky Learning Rates

    The performance of stochastic gradient descent (SGD) depends critically on how learning rates are tuned and decreased over time. We propose a method to automatically adjust multiple learning rates so as to minimize the expected error at any one time. The method relies on local gradient variations across samples. In …

  • Pedestrian Detection with Unsupervised Multi-Stage Feature Learning

    Pedestrian detection is a problem of considerable practical interest. Adding to the list of successful applications of deep learning methods to vision, we report state-of-the-art and competitive results on all major pedestrian datasets with a convolutional network model. The model uses a few new twists, such as multi-stage features, connections …