Yann LeCun

Affiliation: Unknown

Papers

  • Backpropagation for Implicit Spectral Densities

    Most successful machine intelligence systems rely on gradient-based learning, which is made possible by backpropagation. Some systems are designed to aid us in interpreting data when explicit goals cannot be provided. These unsupervised systems are commonly trained by backpropagating through a likelihood function. We introduce a tool that allows us …

  • GLoMo: Unsupervisedly Learned Relational Graphs as Transferable Representations

    Modern deep transfer learning approaches have mainly focused on learning generic feature vectors from one task that are transferable to other tasks, such as word embeddings in language and pretrained convolutional features in vision. However, these approaches usually transfer unary features and largely ignore more structured graphical representations. This work …

  • Adversarially-Trained Normalized Noisy-Feature Auto-Encoder for Text Generation

    This article proposes Adversarially-Trained Normalized Noisy-Feature Auto-Encoder (ATNNFAE) for byte-level text generation. An ATNNFAE consists of an auto-encoder where the internal code is normalized on the unit sphere and corrupted by additive noise. Simultaneously, a replica of the decoder (sharing the same parameters as the AE decoder) is used as …

  • A Spectral Regularizer for Unsupervised Disentanglement

    A generative model with a disentangled representation allows for independent control over different aspects of the output. Learning disentangled representations has been a recent topic of great interest, but it remains poorly understood. We show that even for GANs that do not possess disentangled representations, one can find curved trajectories …

  • Learning about an exponential amount of conditional distributions

    We introduce the Neural Conditioner (NC), a self-supervised machine able to learn about all the conditional distributions of a random vector $X$. The NC is a function $NC(x \cdot a, a, r)$ that leverages adversarial training to match each conditional distribution $P(X_r|X_a=x_a)$. After training, the NC generalizes to sample from …

  • Unsupervised Image Matching and Object Discovery as Optimization

    Learning with complete or partial supervision is powerful but relies on ever-growing human annotation efforts. As a way to mitigate this serious problem, as well as to serve specific applications, unsupervised learning has emerged as an important field of research. In computer vision, unsupervised learning comes in various guises. We …

  • Inspirational Adversarial Image Generation

    The task of image generation started to receive some attention from artists and designers to inspire them in new creations. However, exploiting the results of deep generative models such as Generative Adversarial Networks can be long and tedious given the lack of existing tools. In this work, we propose a …

  • Dimensionality Reduction by Learning an Invariant Mapping

    Dimensionality reduction involves mapping a set of high dimensional input points onto a low dimensional manifold so that 'similar" points in input space are mapped to nearby points on the manifold. We present a method - called Dimensionality Reduction by Learning an Invariant Mapping (DrLIM) - for learning a globally …