Yoshua Bengio

Affiliation: Unknown

Papers

  • Coordinating Policies Among Multiple Agents via an Intelligent Communication Channel

    In Multi-Agent Reinforcement Learning (MARL), specialized channels are often introduced that allow agents to communicate directly with one another. In this paper, we propose an alternative approach whereby agents communicate through an intelligent facilitator that learns to sift through and interpret signals provided by all agents to improve the agents' …

  • Agnostic Physics-Driven Deep Learning

    This work establishes that a physical system can perform statistical learning without gradient computations, via an Agnostic Equilibrium Propagation (Aeqprop) procedure that combines energy minimization, homeostatic control, and nudging towards the correct response. In Aeqprop, the specifics of the system do not have to be known: the procedure is based …

  • Weakly Supervised Representation Learning with Sparse Perturbations

    The theory of representation learning aims to build methods that provably invert the data generating process with minimal domain knowledge or any source of supervision. Most prior approaches require strong distributional assumptions on the latent variables and weak supervision (auxiliary information such as timestamps) to provide provable identification guarantees. In …

  • Is a Modular Architecture Enough?

    Inspired from human cognition, machine learning systems are gradually revealing advantages of sparser and more modular architectures. Recent work demonstrates that not only do some modular architectures generalize well, but they also lead to better out-of-distribution generalization, scaling properties, learning speed, and interpretability. A key intuition behind the success of …

  • Building Robust Ensembles via Margin Boosting

    In the context of adversarial robustness, a single model does not usually have enough power to defend against all possible adversarial attacks, and as a result, has sub-optimal robustness. Consequently, an emerging line of work has focused on learning an ensemble of neural networks to defend against adversarial attacks. In …

  • On the Generalization and Adaption Performance of Causal Models

    Learning models that offer robust out-of-distribution generalization and fast adaptation is a key challenge in modern machine learning. Modelling causal structure into neural networks holds the promise to accomplish robust zero and few-shot adaptation. Recent advances in differentiable causal discovery have proposed to factorize the data generating process into a …

  • On Neural Architecture Inductive Biases for Relational Tasks

    Current deep learning approaches have shown good in-distribution generalization performance, but struggle with out-of-distribution generalization. This is especially true in the case of tasks involving abstract relations like recognizing rules in sequences, as we find in many intelligence tests. Recent work has explored how forcing relational representations to remain distinct …

  • Your Autoregressive Generative Model Can be Better If You Treat It as an Energy-Based One

    Autoregressive generative models are commonly used, especially for those tasks involving sequential data. They have, however, been plagued by a slew of inherent flaws due to the intrinsic characteristics of chain-style conditional modeling (e.g., exposure bias or lack of long-range coherence), severely limiting their ability to model distributions properly. In …

  • Lookback for Learning to Branch

    The expressive and computationally inexpensive bipartite Graph Neural Networks (GNN) have been shown to be an important component of deep learning based Mixed-Integer Linear Program (MILP) solvers. Recent works have demonstrated the effectiveness of such GNNs in replacing the branching (variable selection) heuristic in branch-and-bound (B&B) solvers. These GNNs are …