In the analysis of bibliometric networks, researchers often use mapping and clustering techniques in a combined fashion. Typically, however, mapping and clustering techniques that are used together rely on very different ideas and assumptions. We propose a unified approach to mapping and clustering of bibliometric networks. We show that the VOS mapping technique and a weighted and parameterized variant of modularity-based clustering can both be derived from the same underlying principle. We illustrate our proposed approach by producing a combined mapping and clustering of the most frequently cited publications that appeared in the field of information science in the period 1999-2008.