A new proof of the graph removal lemma

Jacob Fox

Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(n^h) copies of H can be made H-free by removing o(n^2) edges. We give a new proof which avoids Szemer\'edi's regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment