There are numerous examples of problems in symbolic algebra in which the required storage grows far beyond the limitations even of the distributed RAM of a cluster. Often this limitation determines how large a problem one can solve in practice. Roomy provides a minimally invasive system to modify the code for such a computation, in order to use the local disks of a cluster or a SAN as a transparent extension of RAM. Roomy is implemented as a C/C++ library. It provides some simple data structures (arrays, unordered lists, and hash tables). Some typical programming constructs that one might employ in Roomy are: map, reduce, duplicate elimination, chain reduction, pair reduction, and breadth-first search. All aspects of parallelism and remote I/O are hidden within the Roomy library.