A $ B_h $ set (or Sidon set of order $ h $) in an Abelian group $ G $ is any subset $ \{b_0, b_1, \ldots,b_{n}\} $ of $ G $ with the property that all the sums $ b_{i_1} + \cdots + b_{i_h} $ are different up to the order of the summands. Let $ \phi(h,n) $ denote the order of the smallest Abelian group containing a $ B_h $ set of cardinality $ n + 1 $. It is shown that \[ \lim_{h \to \infty} \frac{ \phi(h,n) }{ h^n } = \frac{1}{n! \delta_L(\triangle^n)} , \] where $ \delta_L(\triangle^n) $ is the lattice packing density of an $ n $-simplex in Euclidean space. This determines the asymptotics exactly in cases where this density is known ($ n \leq 3 $) and gives improved bounds on $ \phi(h,n) $ in the remaining cases. The corresponding geometric characterization of bases of order $ h $ in finite Abelian groups in terms of lattice coverings by simplices is also given.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok