Variable-Length Coding with Cost Allowing Non-Vanishing Error Probability

Hideki Yagi, Ryo Nomura

We derive a general formula of the minimum achievable rate for fixed-to-variable length coding with a regular cost function by allowing the error probability up to a constant $\varepsilon$. For a fixed-to-variable length code, we call the set of source sequences that can be decoded without error the dominant set of source sequences. For any two regular cost functions, it is revealed that the dominant set of source sequences for a code attaining the minimum achievable rate with a cost function is also the dominant set for a code attaining the minimum achievable rate with the other cost function. We also give a general formula of the second-order minimum achievable rate.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment