Sketching Meets Random Projection in the Dual: A Provable Recovery Algorithm for Big and High-dimensional Data

Jialei Wang, Jason D. Lee, Mehrdad Mahdavi, Mladen Kolar, Nathan Srebro

Sketching techniques have become popular for scaling up machine learning algorithms by reducing the sample size or dimensionality of massive data sets, while still maintaining the statistical power of big data. In this paper, we study sketching from an optimization point of view: we first show that the iterative Hessian sketch is an optimization process with preconditioning, and develop accelerated iterative Hessian sketch via the searching the conjugate direction; we then establish primal-dual connections between the Hessian sketch and dual random projection, and apply the preconditioned conjugate gradient approach on the dual problem, which leads to the accelerated iterative dual random projection methods. Finally to tackle the challenges from both large sample size and high-dimensionality, we propose the primal-dual sketch, which iteratively sketches the primal and dual formulations. We show that using a logarithmic number of calls to solvers of small scale problem, primal-dual sketch is able to recover the optimum of the original problem up to arbitrary precision. The proposed algorithms are validated via extensive experiments on synthetic and real data sets which complements our theoretical results.

Knowledge Graph



Sign up or login to leave a comment