Cloud Kotta: Enabling Secure and Scalable Data Analytics in the Cloud

Yadu N. Babuji, Kyle Chard, Aaron Gerow, Eamon Duede

Distributed communities of researchers rely increasingly on valuable, proprietary, or sensitive datasets. Given the growth of such data, especially in fields new to data-driven, computationally intensive research like the social sciences and humanities, coupled with what are often strict and complex data-use agreements, many research communities now require methods that allow secure, scalable and cost-effective storage and analysis. Here we present CLOUD KOTTA: a cloud-based data management and analytics framework. CLOUD KOTTA delivers an end-to-end solution for coordinating secure access to large datasets, and an execution model that provides both automated infrastructure scaling and support for executing analytics near to the data. CLOUD KOTTA implements a fine-grained security model ensuring that only authorized users may access, analyze, and download protected data. It also implements automated methods for acquiring and configuring low-cost storage and compute resources as they are needed. We present the architecture and implementation of CLOUD KOTTA and demonstrate the advantages it provides in terms of increased performance and flexibility. We show that CLOUD KOTTA's elastic provisioning model can reduce costs by up to 16x when compared with statically provisioned models.

Knowledge Graph



Sign up or login to leave a comment