Single Controller Stochastic Games for Optimized Moving Target Defense

AbdelRahman Eldosouky, Walid Saad, Dusit Niyato

Moving target defense (MTD) techniques that enable a system to randomize its configuration to thwart prospective attacks are an effective security solution for tomorrow's wireless networks. However, there is a lack of analytical techniques that enable one to quantify the benefits and tradeoffs of MTDs. In this paper, a novel approach for implementing MTD techniques that can be used to randomize cryptographic techniques and keys in wireless networks is proposed. In particular, the problem is formulated as a stochastic game in which a base station (BS), acting as a defender seeks to strategically change its cryptographic techniques and keys in an effort to deter an attacker that is trying to eavesdrop on the data. The game is shown to exhibit a single-controller property in which only one player, the defender, controls the state of the game. For this game, the existence and properties of the Nash equilibrium are studied, in the presence of a defense cost for using MTD. Then, a practical algorithm for deriving the equilibrium MTD strategies is derived. Simulation results show that the proposed game-theoretic MTD framework can significantly improve the overall utility of the defender, while enabling effective randomization over cryptographic techniques.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment