A Closed Form Solution to Multi-View Low-Rank Regression

Shuai Zheng, Xiao Cai, Chris Ding, Feiping Nie, Heng Huang

Real life data often includes information from different channels. For example, in computer vision, we can describe an image using different image features, such as pixel intensity, color, HOG, GIST feature, SIFT features, etc.. These different aspects of the same objects are often called multi-view (or multi-modal) data. Low-rank regression model has been proved to be an effective learning mechanism by exploring the low-rank structure of real life data. But previous low-rank regression model only works on single view data. In this paper, we propose a multi-view low-rank regression model by imposing low-rank constraints on multi-view regression model. Most importantly, we provide a closed-form solution to the multi-view low-rank regression model. Extensive experiments on 4 multi-view datasets show that the multi-view low-rank regression model outperforms single-view regression model and reveals that multi-view low-rank structure is very helpful.

Knowledge Graph



Sign up or login to leave a comment