Dynamic Buffer Management for Multimedia QoS in Beyond 3G Wireless Networks

Suleiman Y. Yerima, Khalid Al-Begain

This paper investigates a dynamic buffer management scheme for QoS control of multimedia services in beyond 3G wireless systems. The scheme is studied in the context of the state-of-the-art 3.5G system i.e. the High Speed Downlink Packet Access (HSDPA) which enhances 3G UMTS to support high-speed packet switched services. Unlike earlier systems, UMTS-evolved systems from HSDPA and beyond incorporate mechanisms such as packet scheduling and HARQ in the base station necessitating data buffering at the air interface. This introduces a potential bottleneck to end-to-end communication. Hence, buffer management at the air interface is crucial for end-to-end QoS support of multimedia services with multiplexed parallel diverse flows such as video and data in the same end-user session. The dynamic buffer management scheme for HSDPA multimedia sessions with aggregated real-time and non real-time flows is investigated via extensive HSDPA simulations. The impact of the scheme on end-to-end traffic performance is evaluated with an example multimedia session comprising a real-time streaming flow concurrent with TCP-based non real-time flow. Results demonstrate that the scheme can guarantee the end-to-end QoS of the real-time streaming flow, whilst simultaneously protecting the non real-time flow from starvation resulting in improved end-to-end throughput performance.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment