Real-time analysis of cataract surgery videos using statistical models

Katia Charrière, Gwenolé Quellec, Mathieu Lamard, David Martiano, Guy Cazuguel, Gouenou Coatrieux, Béatrice Cochener

The automatic analysis of the surgical process, from videos recorded during surgeries, could be very useful to surgeons, both for training and for acquiring new techniques. The training process could be optimized by automatically providing some targeted recommendations or warnings, similar to the expert surgeon's guidance. In this paper, we propose to reuse videos recorded and stored during cataract surgeries to perform the analysis. The proposed system allows to automatically recognize, in real time, what the surgeon is doing: what surgical phase or, more precisely, what surgical step he or she is performing. This recognition relies on the inference of a multilevel statistical model which uses 1) the conditional relations between levels of description (steps and phases) and 2) the temporal relations among steps and among phases. The model accepts two types of inputs: 1) the presence of surgical tools, manually provided by the surgeons, or 2) motion in videos, automatically analyzed through the Content Based Video retrieval (CBVR) paradigm. Different data-driven statistical models are evaluated in this paper. For this project, a dataset of 30 cataract surgery videos was collected at Brest University hospital. The system was evaluated in terms of area under the ROC curve. Promising results were obtained using either the presence of surgical tools ($A_z$ = 0.983) or motion analysis ($A_z$ = 0.759). The generality of the method allows to adapt it to any kinds of surgeries. The proposed solution could be used in a computer assisted surgery tool to support surgeons during the surgery.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment