Orbits of graphs under local complementation (LC) and edge local complementation (ELC) have been studied in several different contexts. For instance, there are connections between orbits of graphs and error-correcting codes. We define a new graph class, ELC-preserved graphs, comprising all graphs that have an ELC orbit of size one. Through an exhaustive search, we find all ELC-preserved graphs of order up to 12 and all ELC-preserved bipartite graphs of order up to 16. We provide general recursive constructions for infinite families of ELC-preserved graphs, and show that all known ELC-preserved graphs arise from these constructions or can be obtained from Hamming codes. We also prove that certain pairs of ELC-preserved graphs are LC equivalent. We define ELC-preserved codes as binary linear codes corresponding to bipartite ELC-preserved graphs, and study the parameters of such codes.