From matrix interpretations over the rationals to matrix interpretations over the naturals

Salvador Lucas

Matrix interpretations generalize linear polynomial interpretations and have been proved useful in the implementation of tools for automatically proving termination of Term Rewriting Systems. In view of the successful use of rational coefficients in polynomial interpretations, we have recently generalized traditional matrix interpretations (using natural numbers in the matrix entries) to incorporate real numbers. However, existing results which formally prove that polynomials over the reals are more powerful than polynomials over the naturals for proving termination of rewrite systems failed to be extended to matrix interpretations. In this paper we get deeper into this problem. We show that, under some conditions, it is possible to transform a matrix interpretation over the rationals satisfying a set of symbolic constraints into a matrix interpretation over the naturals (using bigger matrices) which still satisfies the constraints.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment