We consider the problem of transmitting correlated data after independent encoding to a central receiver through orthogonal channels. We assume that the channel state information is not known at the transmitter. The receiver has access to both the source correlation and the channel state information. We provide a generic framework for analyzing the performance of joint iterative decoding, using density evolution. Using differential evolution, we design punctured systematic LDPC codes to maximize the region of achievable channel conditions, with joint iterative decoding. The main contribution of this paper is to demonstrate that properly designed LDPC can perform well simultaneously over a wide range of channel parameters.