We analyze fading interference relay networks where M single-antenna source-destination terminal pairs communicate concurrently and in the same frequency band through a set of K single-antenna relays using half-duplex two-hop relaying. Assuming that the relays have channel state information (CSI), it is shown that in the large-M limit, provided K grows fast enough as a function of M, the network "decouples" in the sense that the individual source-destination terminal pair capacities are strictly positive. The corresponding required rate of growth of K as a function of M is found to be sufficient to also make the individual source-destination fading links converge to nonfading links. We say that the network "crystallizes" as it breaks up into a set of effectively isolated "wires in the air". A large-deviations analysis is performed to characterize the "crystallization" rate, i.e., the rate (as a function of M,K) at which the decoupled links converge to nonfading links. In the course of this analysis, we develop a new technique for characterizing the large-deviations behavior of certain sums of dependent random variables. For the case of no CSI at the relay level, assuming amplify-and-forward relaying, we compute the per source-destination terminal pair capacity for M,K converging to infinity, with K/M staying fixed, using tools from large random matrix theory.

Thanks. We have received your report. If we find this content to be in
violation of our guidelines,
we will remove it.

Ok