Exploiting Color Name Space for Salient Object Detection

Jing Lou, Huan Wang, Longtao Chen, Fenglei Xu, Qingyuan Xia, Wei Zhu, Mingwu Ren

In this paper, we will investigate the contribution of color names for the task of salient object detection. An input image is first converted to color name space, which is consisted of 11 probabilistic channels. By exploiting a surroundedness cue, we obtain a saliency map through a linear combination of a set of sequential attention maps. To overcome the limitation of only using the surroundedness cue, two global cues with respect to color names are invoked to guide the computation of a weighted saliency map. Finally, we integrate the above two saliency maps into a unified framework to generate the final result. In addition, an improved post-processing procedure is introduced to effectively suppress image backgrounds while uniformly highlight salient objects. Experimental results show that the proposed model produces more accurate saliency maps and performs well against twenty-one saliency models in terms of three evaluation metrics on three public data sets.

Knowledge Graph



Sign up or login to leave a comment