Robust Consensus for Multi-Agent Systems Communicating over Stochastic Uncertain Networks

Zhongkui Li, Jie Chen

In this paper, we study the robust consensus problem for a set of discrete-time linear agents to coordinate over an uncertain communication network, which is to achieve consensus against the transmission errors and noises resulted from the information exchange between the agents. We model the network by means of communication links subject to multiplicative stochastic uncertainties, which are susceptible to describing packet dropout, random delay, and fading phenomena. Different communication topologies, such as undirected graphs and leader-follower graphs, are considered. We derive sufficient conditions for robust consensus in the mean square sense. This results unveil intrinsic constraints on consensus attainment imposed by the network synchronizability, the unstable agent dynamics, and the channel uncertainty variances. Consensus protocols are designed based on the state information transmitted over the uncertain channels, by solving a modified algebraic Riccati equation.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment