Complete 3-Qubit Grover Search on a Programmable Quantum Computer

C. Figgatt, D. Maslov, K. A. Landsman, N. M. Linke, S. Debnath, C. Monroe

Searching large databases is an important problem with broad applications. The Grover search algorithm provides a powerful method for quantum computers to perform searches with a quadratic speedup in the number of required database queries over classical computers. It is an optimal search algorithm for a quantum computer, and has further applications as a subroutine for other quantum algorithms. Searches with two qubits have been demonstrated on a variety of platforms and proposed for others, but larger search spaces have only been demonstrated on a non-scalable NMR system. Here, we report results for a complete three-qubit Grover search algorithm using the scalable quantum computing technology of trapped atomic ions, with better-than-classical performance. The algorithm is performed for all 8 possible single-result oracles and all 28 possible two-result oracles. Two methods of state marking are used for the oracles: a phase-flip method employed by other experimental demonstrations, and a Boolean method requiring an ancilla qubit that is directly equivalent to the state-marking scheme required to perform a classical search. All quantum solutions are shown to outperform their classical counterparts. We also report the first implementation of a Toffoli-4 gate, which is used along with Toffoli-3 gates to construct the algorithms; these gates have process fidelities of 70.5% and 89.6%, respectively.

Knowledge Graph



Sign up or login to leave a comment