On the Statistical Efficiency of Compositional Nonparametric Prediction

Yixi Xu, Jean Honorio, Xiao Wang

In this paper, we propose a compositional nonparametric method in which a model is expressed as a labeled binary tree of $2k+1$ nodes, where each node is either a summation, a multiplication, or the application of one of the $q$ basis functions to one of the $p$ covariates. We show that in order to recover a labeled binary tree from a given dataset, the sufficient number of samples is $O(k\log(pq)+\log(k!))$, and the necessary number of samples is $\Omega(k\log (pq)-\log(k!))$. We further propose a greedy algorithm for regression in order to validate our theoretical findings through synthetic experiments.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment