Miika Hannula, Juha Kontinen, Jonni Virtema

Team semantics is the mathematical framework of modern logics of dependence and independence in which formulae are interpreted by sets of assignments (teams) instead of single assignments as in first-order logic. In order to deepen the fruitful interplay between team semantics and database dependency theory, we define "Polyteam Semantics" in which formulae are evaluated over a family of teams. We begin by defining a novel polyteam variant of dependence atoms and give a finite axiomatisation for the associated implication problem. We also characterise the expressive power of poly-dependence logic by properties of polyteams that are downward closed and definable in existential second-order logic (ESO). The analogous result is shown to hold for poly-independence logic and all ESO-definable properties.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment