Much Faster Algorithms for Matrix Scaling

Zeyuan Allen-Zhu, Yuanzhi Li, Rafael Oliveira, Avi Wigderson

We develop several efficient algorithms for the classical \emph{Matrix Scaling} problem, which is used in many diverse areas, from preconditioning linear systems to approximation of the permanent. On an input $n\times n$ matrix $A$, this problem asks to find diagonal (scaling) matrices $X$ and $Y$ (if they exist), so that $X A Y$ $\varepsilon$-approximates a doubly stochastic, or more generally a matrix with prescribed row and column sums. We address the general scaling problem as well as some important special cases. In particular, if $A$ has $m$ nonzero entries, and if there exist $X$ and $Y$ with polynomially large entries such that $X A Y$ is doubly stochastic, then we can solve the problem in total complexity $\tilde{O}(m + n^{4/3})$. This greatly improves on the best known previous results, which were either $\tilde{O}(n^4)$ or $O(m n^{1/2}/\varepsilon)$. Our algorithms are based on tailor-made first and second order techniques, combined with other recent advances in continuous optimization, which may be of independent interest for solving similar problems.

Knowledge Graph



Sign up or login to leave a comment