Stability of Service under Time-of-Use Pricing

Shuchi Chawla, Nikhil R. Devanur, Alexander E. Holroyd, Anna Karlin, James Martin, Balasubramanian Sivan

We consider "time-of-use" pricing as a technique for matching supply and demand of temporal resources with the goal of maximizing social welfare. Relevant examples include energy, computing resources on a cloud computing platform, and charging stations for electric vehicles, among many others. A client/job in this setting has a window of time during which he needs service, and a particular value for obtaining it. We assume a stochastic model for demand, where each job materializes with some probability via an independent Bernoulli trial. Given a per-time-unit pricing of resources, any realized job will first try to get served by the cheapest available resource in its window and, failing that, will try to find service at the next cheapest available resource, and so on. Thus, the natural stochastic fluctuations in demand have the potential to lead to cascading overload events. Our main result shows that setting prices so as to optimally handle the {\em expected} demand works well: with high probability, when the actual demand is instantiated, the system is stable and the expected value of the jobs served is very close to that of the optimal offline algorithm.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment