Analyzing Social Interaction Networks from Twitter for Planned Special Events

Arif Mohaimin Sadri, Samiul Hasan, Satish V. Ukkusuri, Juan Esteban Suarez Lopez

The complex topology of real networks allows its actors to change their functional behavior. Network models provide better understanding of the evolutionary mechanisms being accountable for the growth of such networks by capturing the dynamics in the ways network agents interact and change their behavior. Considerable amount of research efforts is required for developing novel network modeling techniques to understand the structural properties such networks, reproducing similar properties based on empirical evidence, and designing such networks efficiently. First, we demonstrate how to construct social interaction networks using social media data and then present the key findings obtained from the network analytics. We analyze the characteristics and growth of such interaction networks, examine the network properties and derive important insights based on the theories of network science literature. We also discuss the application of such networks as a useful tool to effectively disseminate targeted information during planned special events. We observed that the degree-distributions of such networks follow power-law that is indicative of the existence of fewer nodes in the network with higher levels of interactions, and many other nodes with less interactions. While the network elements and average user degree grow linearly each day, densities of such networks tend to become zero. Largest connected components exhibit higher connectivity (density) when compared with the whole graph. Network radius and diameter become stable over time evidencing the small-world property. We also observe increased transitivity and higher stability of the power-law exponents as the networks grow. Data is specific to the Purdue University community and two large events, namely Purdue Day of Giving and Senator Bernie Sanders' visit to Purdue University as part of Indiana Primary Election 2016.

Knowledge Graph



Sign up or login to leave a comment