Comparative Analysis of Open Source Frameworks for Machine Learning with Use Case in Single-Threaded and Multi-Threaded Modes

Yuriy Kochura, Sergii Stirenko, Anis Rojbi, Oleg Alienin, Michail Novotarskiy, Yuri Gordienko

The basic features of some of the most versatile and popular open source frameworks for machine learning (TensorFlow, Deep Learning4j, and H2O) are considered and compared. Their comparative analysis was performed and conclusions were made as to the advantages and disadvantages of these platforms. The performance tests for the de facto standard MNIST data set were carried out on H2O framework for deep learning algorithms designed for CPU and GPU platforms for single-threaded and multithreaded modes of operation.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment