Causal Discovery in the Presence of Measurement Error: Identifiability Conditions

Kun Zhang, Mingming Gong, Joseph Ramsey, Kayhan Batmanghelich, Peter Spirtes, Clark Glymour

Measurement error in the observed values of the variables can greatly change the output of various causal discovery methods. This problem has received much attention in multiple fields, but it is not clear to what extent the causal model for the measurement-error-free variables can be identified in the presence of measurement error with unknown variance. In this paper, we study precise sufficient identifiability conditions for the measurement-error-free causal model and show what information of the causal model can be recovered from observed data. In particular, we present two different sets of identifiability conditions, based on the second-order statistics and higher-order statistics of the data, respectively. The former was inspired by the relationship between the generating model of the measurement-error-contaminated data and the factor analysis model, and the latter makes use of the identifiability result of the over-complete independent component analysis problem.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment