Joint Max Margin and Semantic Features for Continuous Event Detection in Complex Scenes

Iman Abbasnejad, Sridha Sridharan, Simon Denman, Clinton Fookes, Simon Lucey

In this paper the problem of complex event detection in the continuous domain (i.e. events with unknown starting and ending locations) is addressed. Existing event detection methods are limited to features that are extracted from the local spatial or spatio-temporal patches from the videos. However, this makes the model vulnerable to the events with similar concepts e.g. "Open drawer" and "Open cupboard". In this work, in order to address the aforementioned limitations we present a novel model based on the combination of semantic and temporal features extracted from video frames. We train a max-margin classifier on top of the extracted features in an adaptive framework that is able to detect the events with unknown starting and ending locations. Our model is based on the Bidirectional Region Neural Network and large margin Structural Output SVM. The generality of our model allows it to be simply applied to different labeled and unlabeled datasets. We finally test our algorithm on three challenging datasets, "UCF 101-Action Recognition", "MPII Cooking Activities" and "Hollywood", and we report state-of-the-art performance.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment