When Image Denoising Meets High-Level Vision Tasks: A Deep Learning Approach

Ding Liu, Bihan Wen, Xianming Liu, Zhangyang Wang, Thomas S. Huang

Conventionally, image denoising and high-level vision tasks are handled separately in computer vision. In this paper, we cope with the two jointly and explore the mutual influence between them. First we propose a convolutional neural network for image denoising which achieves the state-of-the-art performance. Second we propose a deep neural network solution that cascades two modules for image denoising and various high-level tasks, respectively, and use the joint loss for updating only the denoising network via back-propagation. We demonstrate that on one hand, the proposed denoiser has the generality to overcome the performance degradation of different high-level vision tasks. On the other hand, with the guidance of high-level vision information, the denoising network can generate more visually appealing results. To the best of our knowledge, this is the first work investigating the benefit of exploiting image semantics simultaneously for image denoising and high-level vision tasks via deep learning. The code is available online https://github.com/Ding-Liu/DeepDenoising.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment