Learning Deep ResNet Blocks Sequentially using Boosting Theory

Furong Huang, Jordan Ash, John Langford, Robert Schapire

Deep neural networks are known to be difficult to train due to the instability of back-propagation. A deep \emph{residual network} (ResNet) with identity loops remedies this by stabilizing gradient computations. We prove a boosting theory for the ResNet architecture. We construct $T$ weak module classifiers, each contains two of the $T$ layers, such that the combined strong learner is a ResNet. Therefore, we introduce an alternative Deep ResNet training algorithm, \emph{BoostResNet}, which is particularly suitable in non-differentiable architectures. Our proposed algorithm merely requires a sequential training of $T$ "shallow ResNets" which are inexpensive. We prove that the training error decays exponentially with the depth $T$ if the \emph{weak module classifiers} that we train perform slightly better than some weak baseline. In other words, we propose a weak learning condition and prove a boosting theory for ResNet under the weak learning condition. Our results apply to general multi-class ResNets. A generalization error bound based on margin theory is proved and suggests ResNet's resistant to overfitting under network with $l_1$ norm bounded weights.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment