A-NICE-MC: Adversarial Training for MCMC

Jiaming Song, Shengjia Zhao, Stefano Ermon

Existing Markov Chain Monte Carlo (MCMC) methods are either based on general-purpose and domain-agnostic schemes which can lead to slow convergence, or hand-crafting of problem-specific proposals by an expert. We propose A-NICE-MC, a novel method to train flexible parametric Markov chain kernels to produce samples with desired properties. First, we propose an efficient likelihood-free adversarial training method to train a Markov chain and mimic a given data distribution. Then, we leverage flexible volume preserving flows to obtain parametric kernels for MCMC. Using a bootstrap approach, we show how to train efficient Markov chains to sample from a prescribed posterior distribution by iteratively improving the quality of both the model and the samples. A-NICE-MC provides the first framework to automatically design efficient domain-specific MCMC proposals. Empirical results demonstrate that A-NICE-MC combines the strong guarantees of MCMC with the expressiveness of deep neural networks, and is able to significantly outperform competing methods such as Hamiltonian Monte Carlo.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment