ECO-AMLP: A Decision Support System using an Enhanced Class Outlier with Automatic Multilayer Perceptron for Diabetes Prediction

Maham Jahangir, Hammad Afzal, Mehreen Ahmed, Khawar Khurshid, Raheel Nawaz

With advanced data analytical techniques, efforts for more accurate decision support systems for disease prediction are on rise. Surveys by World Health Organization (WHO) indicate a great increase in number of diabetic patients and related deaths each year. Early diagnosis of diabetes is a major concern among researchers and practitioners. The paper presents an application of \textit{Automatic Multilayer Perceptron }which\textit{ }is combined with an outlier detection method \textit{Enhanced Class Outlier Detection using distance based algorithm }to create a prediction framework named as Enhanced Class Outlier with Automatic Multi layer Perceptron (ECO-AMLP). A series of experiments are performed on publicly available Pima Indian Diabetes Dataset to compare ECO-AMLP with other individual classifiers as well as ensemble based methods. The outlier technique used in our framework gave better results as compared to other pre-processing and classification techniques. Finally, the results are compared with other state-of-the-art methods reported in literature for diabetes prediction on PIDD and achieved accuracy of 88.7\% bests all other reported studies.

Knowledge Graph



Sign up or login to leave a comment