New Fairness Metrics for Recommendation that Embrace Differences

Sirui Yao, Bert Huang

We study fairness in collaborative-filtering recommender systems, which are sensitive to discrimination that exists in historical data. Biased data can lead collaborative filtering methods to make unfair predictions against minority groups of users. We identify the insufficiency of existing fairness metrics and propose four new metrics that address different forms of unfairness. These fairness metrics can be optimized by adding fairness terms to the learning objective. Experiments on synthetic and real data show that our new metrics can better measure fairness than the baseline, and that the fairness objectives effectively help reduce unfairness.

Knowledge Graph



Sign up or login to leave a comment