Guided Co-training for Large-Scale Multi-View Spectral Clustering

Tyng-Luh Liu

In many real-world applications, we have access to multiple views of the data, each of which characterizes the data from a distinct aspect. Several previous algorithms have demonstrated that one can achieve better clustering accuracy by integrating information from all views appropriately than using only an individual view. Owing to the effectiveness of spectral clustering, many multi-view clustering methods are based on it. Unfortunately, they have limited applicability to large-scale data due to the high computational complexity of spectral clustering. In this work, we propose a novel multi-view spectral clustering method for large-scale data. Our approach is structured under the guided co-training scheme to fuse distinct views, and uses the sampling technique to accelerate spectral clustering. More specifically, we first select $p$ ($\ll n$) landmark points and then approximate the eigen-decomposition accordingly. The augmented view, which is essential to guided co-training process, can then be quickly determined by our method. The proposed algorithm scales linearly with the number of given data. Extensive experiments have been performed and the results support the advantage of our method for handling the large-scale multi-view situation.

Knowledge Graph



Sign up or login to leave a comment