Pricing for Online Resource Allocation: Intervals and Paths

Shuchi Chawla, J. Benjamin Miller, Yifeng Teng

We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of items; buyers' values for the bundles are drawn from known distributions. This problem is closely related to the so-called prophet-inequality of Krengel and Sucheston and its extensions in recent literature. Motivated by applications to cloud economics, we consider two kinds of buyer preferences. In the first, items correspond to different units of time at which a resource is available; the items are arranged in a total order and buyers desire intervals of items. The second corresponds to bandwidth allocation over a tree network; the items are edges in the network and buyers desire paths. Because buyers' preferences have complementarities in the settings we consider, recent constant-factor approximations via item prices do not apply, and indeed strong negative results are known. We develop static, anonymous bundle pricing mechanisms. For the interval preferences setting, we show that static, anonymous bundle pricings achieve a sublogarithmic competitive ratio, which is optimal (within constant factors) over the class of all online allocation algorithms, truthful or not. For the path preferences setting, we obtain a nearly-tight logarithmic competitive ratio. Both of these results exhibit an exponential improvement over item pricings for these settings. Our results extend to settings where the seller has multiple copies of each item, with the competitive ratio decreasing linearly with supply. Such a gradual tradeoff between supply and the competitive ratio for welfare was previously known only for the single item prophet inequality.

Knowledge Graph



Sign up or login to leave a comment