Region-Based Multiscale Spatiotemporal Saliency for Video

Trung-Nghia Le, Akihiro Sugimoto

Detecting salient objects from a video requires exploiting both spatial and temporal knowledge included in the video. We propose a novel region-based multiscale spatiotemporal saliency detection method for videos, where static features and dynamic features computed from the low and middle levels are combined together. Our method utilizes such combined features spatially over each frame and, at the same time, temporally across frames using consistency between consecutive frames. Saliency cues in our method are analyzed through a multiscale segmentation model, and fused across scale levels, yielding to exploring regions efficiently. An adaptive temporal window using motion information is also developed to combine saliency values of consecutive frames in order to keep temporal consistency across frames. Performance evaluation on several popular benchmark datasets validates that our method outperforms existing state-of-the-arts.

Knowledge Graph



Sign up or login to leave a comment