LitStoryTeller: An Interactive System for Visual Exploration of Scientific Papers Leveraging Named entities and Comparative Sentences

Qing Ping, Chaomei Chen

The present study proposes LitStoryTeller, an interactive system for visually exploring the semantic structure of a scientific article. We demonstrate how LitStoryTeller could be used to answer some of the most fundamental research questions, such as how a new method was built on top of existing methods, based on what theoretical proof and experimental evidences. More importantly, LitStoryTeller can assist users to understand the full and interesting story a scientific paper, with a concise outline and important details. The proposed system borrows a metaphor from screen play, and visualizes the storyline of a scientific paper by arranging its characters (scientific concepts or terminologies) and scenes (paragraphs/sentences) into a progressive and interactive storyline. Such storylines help to preserve the semantic structure and logical thinking process of a scientific paper. Semantic structures, such as scientific concepts and comparative sentences, are extracted using existing named entity recognition APIs and supervised classifiers, from a scientific paper automatically. Two supplementary views, ranked entity frequency view and entity co-occurrence network view, are provided to help users identify the "main plot" of such scientific storylines. When collective documents are ready, LitStoryTeller also provides a temporal entity evolution view and entity community view for collection digestion.

Knowledge Graph



Sign up or login to leave a comment