Beyond the technical challenges for deploying Machine Learning solutions in a software company

Ilias Flaounas

Recently software development companies started to embrace Machine Learning (ML) techniques for introducing a series of advanced functionality in their products such as personalisation of the user experience, improved search, content recommendation and automation. The technical challenges for tackling these problems are heavily researched in literature. A less studied area is a pragmatic approach to the role of humans in a complex modern industrial environment where ML based systems are developed. Key stakeholders affect the system from inception and up to operation and maintenance. Product managers want to embed "smart" experiences for their users and drive the decisions on what should be built next; software engineers are challenged to build or utilise ML software tools that require skills that are well outside of their comfort zone; legal and risk departments may influence design choices and data access; operations teams are requested to maintain ML systems which are non-stationary in their nature and change behaviour over time; and finally ML practitioners should communicate with all these stakeholders to successfully build a reliable system. This paper discusses some of the challenges we faced in Atlassian as we started investing more in the ML space.

Knowledge Graph



Sign up or login to leave a comment