Power packet transferability via symbol propagation matrix

Shinya Nawata, Atsuto Maki, Takashi Hikihara

Power packet is a unit of electric power transferred by a power pulse with an information tag. In Shannon's information theory, messages are represented by symbol sequences in a digitized manner. Referring to this formulation, we define symbols in power packetization as a minimum unit of power transferred by a tagged pulse. Here, power is digitized and quantized. In this paper, we consider packetized power in networks for a finite duration, giving symbols and their energies to the networks. A network structure is defined using a graph whose nodes represent routers, sources, and destinations. First, we introduce symbol propagation matrix (SPM) in which symbols are transferred at links during unit times. Packetized power is described as a network flow in a spatio-temporal structure. Then, we study the problem of selecting an SPM in terms of transferability, that is, the possibility to represent given energies at sources and destinations during the finite duration. To select an SPM, we consider a network flow problem of packetized power. The problem is formulated as an M-convex submodular flow problem which is known as generalization of the minimum cost flow problem and solvable. Finally, through examples, we verify that this formulation provides reasonable packetized power.

Knowledge Graph



Sign up or login to leave a comment