A Simple and Realistic Pedestrian Model for Crowd Simulation and Application

Wonho Kang, Youngnam Han

The simulation of pedestrian crowd that reflects reality is a major challenge for researches. Several crowd simulation models have been proposed such as cellular automata model, agent-based model, fluid dynamic model, etc. It is important to note that agent-based model is able, over others approaches, to provide a natural description of the system and then to capture complex human behaviors. In this paper, we propose a multi-agent simulation model in which pedestrian positions are updated at discrete time intervals. It takes into account the major normal conditions of a simple pedestrian situated in a crowd such as preferences, realistic perception of environment, etc. Our objective is to simulate the pedestrian crowd realistically towards a simulation of believable pedestrian behaviors. Typical pedestrian phenomena, including the unidirectional and bidirectional movement in a corridor as well as the flow through bottleneck, are simulated. The conducted simulations show that our model is able to produce realistic pedestrian behaviors. The obtained fundamental diagram and flow rate at bottleneck agree very well with classic conclusions and empirical study results. It is hoped that the idea of this study may be helpful in promoting the modeling and simulation of pedestrian crowd in a simple way.

Knowledge Graph



Sign up or login to leave a comment