Revisiting the Effectiveness of Off-the-shelf Temporal Modeling Approaches for Large-scale Video Classification

Yunlong Bian, Chuang Gan, Xiao Liu, Fu Li, Xiang Long, Yandong Li, Heng Qi, Jie Zhou, Shilei Wen, Yuanqing Lin

This paper describes our solution for the video recognition task of ActivityNet Kinetics challenge that ranked the 1st place. Most of existing state-of-the-art video recognition approaches are in favor of an end-to-end pipeline. One exception is the framework of DevNet. The merit of DevNet is that they first use the video data to learn a network (i.e. fine-tuning or training from scratch). Instead of directly using the end-to-end classification scores (e.g. softmax scores), they extract the features from the learned network and then fed them into the off-the-shelf machine learning models to conduct video classification. However, the effectiveness of this line work has long-term been ignored and underestimated. In this submission, we extensively use this strategy. Particularly, we investigate four temporal modeling approaches using the learned features: Multi-group Shifting Attention Network, Temporal Xception Network, Multi-stream sequence Model and Fast-Forward Sequence Model. Experiment results on the challenging Kinetics dataset demonstrate that our proposed temporal modeling approaches can significantly improve existing approaches in the large-scale video recognition tasks. Most remarkably, our best single Multi-group Shifting Attention Network can achieve 77.7% in term of top-1 accuracy and 93.2% in term of top-5 accuracy on the validation set.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment