A Submodularity-Based Approach for Multi-Agent Optimal Coverage Problems

Xinmiao Sun, Christos G. Cassandras, Xiangyu Meng

We consider the optimal coverage problem where a multi-agent network is deployed in an environment with obstacles to maximize a joint event detection probability. The objective function of this problem is non-convex and no global optimum is guaranteed by gradient-based algorithms developed to date. We first show that the objective function is monotone submodular, a class of functions for which a simple greedy algorithm is known to be within 0.63 of the optimal solution. We then derive two tighter lower bounds by exploiting the curvature information (total curvature and elemental curvature) of the objective function. We further show that the tightness of these lower bounds is complementary with respect to the sensing capabilities of the agents. The greedy algorithm solution can be subsequently used as an initial point for a gradient-based algorithm to obtain solutions even closer to the global optimum. Simulation results show that this approach leads to significantly better performance relative to previously used algorithms.

Knowledge Graph



Sign up or login to leave a comment