Weighted parallel SGD for distributed unbalanced-workload training system

Cheng Daning, Li Shigang, Zhang Yunquan

Stochastic gradient descent (SGD) is a popular stochastic optimization method in machine learning. Traditional parallel SGD algorithms, e.g., SimuParallel SGD, often require all nodes to have the same performance or to consume equal quantities of data. However, these requirements are difficult to satisfy when the parallel SGD algorithms run in a heterogeneous computing environment; low-performance nodes will exert a negative influence on the final result. In this paper, we propose an algorithm called weighted parallel SGD (WP-SGD). WP-SGD combines weighted model parameters from different nodes in the system to produce the final output. WP-SGD makes use of the reduction in standard deviation to compensate for the loss from the inconsistency in performance of nodes in the cluster, which means that WP-SGD does not require that all nodes consume equal quantities of data. We also analyze the theoretical feasibility of running two other parallel SGD algorithms combined with WP-SGD in a heterogeneous environment. The experimental results show that WP-SGD significantly outperforms the traditional parallel SGD algorithms on distributed training systems with an unbalanced workload.

Knowledge Graph



Sign up or login to leave a comment