Complexity and (un)decidability of fragments of $\langle \omega^{\omega^\lambda}; \times \rangle$

Alexis Bès, Christian Choffrut

We specify the frontier of decidability for fragments of the first-order theory of ordinal multiplication. We give a NEXPTIME lower bound for the complexity of the existential fragment of $\langle \omega^{\omega^\lambda}; \times, \omega, \omega+1, \omega^2+1 \rangle$ for every ordinal $\lambda$. Moreover, we prove (by reduction from Hilbert Tenth Problem) that the $\exists^*\forall^{6}$-fragment of $\langle \omega^{\omega^\lambda}; \times \rangle$ is undecidable for every ordinal $\lambda$.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment