Towards Mission-Critical Control at the Edge and Over 5G

Per Skarin, William Tärneberg, Karl-Erik Årzen, Maria Kihl

With the emergence of industrial IoT and cloud computing, and the advent of 5G and edge clouds, there are ambitious expectations on elasticity, economies of scale, and fast time to market for demanding use cases in the next generation of ICT networks. Responsiveness and reliability of wireless communication links and services in the cloud are set to improve significantly as the concept of edge clouds is becoming more prevalent. To enable industrial uptake we must provide cloud capacity in the networks but also a sufficient level of simplicity and self-sustainability in the software platforms. In this paper, we present a research test-bed built to study mission-critical control over the distributed edge cloud. We evaluate system properties using a conventional control application in the form of a Model Predictive Controller. Our cloud platform provides the means to continuously operate our mission-critical application while seamlessly relocating computations across geographically dispersed compute nodes. Through our use of 5G wireless radio, we allow for mobility and reliably provide compute resources with low latency, at the edge. The primary contribution of this paper is a state-of-the art, fully operational test-bed showing the potential for merged IoT, 5G, and cloud. We also provide an evaluation of the system while operating a mission-critical application and provide an outlook on a novel research direction.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment