On the Complexity of Pointer Arithmetic in Separation Logic (an extended version)

James Brotherston, Max Kanovich

We investigate the complexity consequences of adding pointer arithmetic to separation logic. Specifically, we study extensions of the points-to fragment of symbolic-heap separation logic with various forms of Presburger arithmetic constraints. Most significantly, we find that, even in the minimal case when we allow only conjunctions of simple "difference constraints" (x'\leq x+k) where k is an integer, polynomial-time decidability is already impossible: satisfiability becomes NP-complete, while quantifier-free entailment becomes coNP-complete and quantified entailment becomes P2-complete (P2 is the second class in the polynomial-time hierarchy) In fact we prove that the upper bound is the same, P2, even for the full pointer arithmetic but with a fixed pointer offset, where we allow any Boolean combinations of the elementary formulas (x'=x+k0), (x'\leq x+k0), and (x'

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment