Generalization in Metric Learning: Should the Embedding Layer be the Embedding Layer?

Nam Vo, James Hays

This work studies deep metric learning under small to medium scale data as we believe that better generalization could be a contributing factor to the improvement of previous fine-grained image retrieval methods; it should be considered when designing future techniques. In particular, we investigate using other layers in a deep metric learning system (besides the embedding layer) for feature extraction and analyze how well they perform on training data and generalize to testing data. From this study, we suggest a new regularization practice where one can add or choose a more optimal layer for feature extraction. State-of-the-art performance is demonstrated on 3 fine-grained image retrieval benchmarks: Cars-196, CUB-200-2011, and Stanford Online Product.

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment