On $k$-error linear complexity of pseudorandom binary sequences derived from Euler quotients

Zhixiong Chen, Vladimir Edemskiy, Pinhui Ke, Chenhuang Wu

We investigate the $k$-error linear complexity of pseudorandom binary sequences of period $p^{\mathfrak{r}}$ derived from the Euler quotients modulo $p^{\mathfrak{r}-1}$, a power of an odd prime $p$ for $\mathfrak{r}\geq 2$. When $\mathfrak{r}=2$, this is just the case of polynomial quotients (including Fermat quotients) modulo $p$, which has been studied in an earlier work of Chen, Niu and Wu. In this work, we establish a recursive relation on the $k$-error linear complexity of the sequences for the case of $\mathfrak{r}\geq 3$. We also state the exact values of the $k$-error linear complexity for the case of $\mathfrak{r}=3$. From the results, we can find that the $k$-error linear complexity of the sequences (of period $p^{\mathfrak{r}}$) does not decrease dramatically for $k

Knowledge Graph

arrow_drop_up

Comments

Sign up or login to leave a comment